随着新一代信息技术与实体经济的加速融合,工业数字化、网络化、智能化演进趋势日益明显,催生了一批制造业数字化转型新模式、新业态,其中数字孪生日趋成为产业各界研究热点,未来发展前景广阔。IDC预测到2020年全球头部600家企业都会使用数字孪生来提供产品创新,Markets and Markets预测到2023年数字孪生市场规模将达到157亿美元,并以38%复合年增长率增长。 一、数字孪生内涵 数字孪生是以数据和模型为驱动,数字孪生体和数字线程为支撑的新型制造模式,能够通过实时连接、映射、分析、反馈物理世界的资产与行为,使工业全要素、全产业链、全价值链达到最大限度闭环优化。一方面,数字孪生体是在虚拟空间构建的表征物理实体实时运行状态的虚拟实体,具备融合几何建模、仿真模拟、数据分析的全方位功能,扮演着综合分析决策的角色。另一方面,数字孪生在集成融合工业数据的过程中依赖于数字线程。数字线程是连接物理世界和数字孪生体的通道,也是多类数字孪生体间连接的通道,具备“在正确的时间,将正确的信息,以正确的方式,推送到正确的地方”的功能,数据集成和业务集成是其两大核心功能。总之,数字孪生能够基于“单个数字孪生体”或基于“数字线程串联的多个孪生体集”,实现对“简单组件”到“复杂物理系统”的连接、映射、分析、反馈。 二、数字孪生技术体系及关键技术发展趋势 (一)六大核心技术支撑数字孪生构建虚实交互的闭环优化 数字孪生技术体系涵盖感知控制、数据集成、模型构建、模型互操作、业务集成、人机交互六大核心技术。一是感知 控制技术具备数据采集和反馈控制两大功能,是连接物理世界的入口和反馈物理世界的出口。二是数据集成实现异构设备和系统的互联互通,让物理世界和承载数字孪生的虚拟空间无缝衔接。三是模型构建实现对物理实体形状和规律的映射。几何模型、机理模型、数据模型的构建分别实现对物理实体形状、已知(或经验)的物理规律以及未知的物理规律的模拟。四是模型互操作承担着将几何、机理、数据三大模型融合的任务,实现从构建“静态映射的物理实体”到构建“动态协同的物理实体”的转变。五是业务集成是数字孪生价值创新的纽带,能够打通产品全生命周期、生产全过程、商业全流程的价值链条。六是人机交互将人的因素融入数字孪生系统,工作者可以通过友好的人机操作方式将控制指令反馈给物理世界,实现数字孪生全闭环优化。 (二)模型构建技术朝着提升建模效率和精度的方向发展 几何、仿真、数据三类模型构建技术多措并举,不断提升建模效率和精度。一是衍生设计和三维扫描建模技术推动几何建模效率不断提升。衍生设计基于算法指令实现复杂几何模型自动化设计外观;以工业CT为代表的三维扫描建模技术能够捕获测试件内部和外部的完整、精确的图像,直接生成完整的三维立体图像;二是深度学习和知识图谱沿着两条路径分别提升模型描述的性能和范围。如利用深度学习进行汽车风洞测试,传统方程法需一天,现需1/4秒。华为构建知识图谱,将采购、物流、制造知识联系起来,实现供应链风险管理与零部件选型。三是无网格仿真技术有望突破传统仿真局限,提升仿真模拟效率。如Altair SimSolid能够在几分钟内分析全功能 CAD 程序集而无需网格划分,大大优化了仿真求解速度。 (三)模型互操作技术加快统一模型间的语义和语法 典型的模型互操作涵盖机理和数据模型、机理模型间、数据模型间互操作三大类。 一是多学科联合仿真技术基于FMI、FMU规范统一了仿真模型接口标准,逐渐成为仿真模型间互操作主流选择。如Modelica已经成为汽车行业多学科联合仿真标准语言。 二是联邦机器学习在满足数据隐私要求的前提下,实现不同人工智能系统数据模型间集成,有望成为数据模型间互操作的通用方法。如谷歌和百度纷纷在人工智能框架下加入联邦学习功能,以满足数据模型间互操作。 三是数据模型和机理模型互操作最为复杂,尚未形成统一方法论,但也得到了一定实践。如MathWorks将旗下Matlab的数据分析和Simulink的仿真模拟两大功能结合,实现对综合业务模型的有效调参。此外,管理壳技术具备模型管理和标识解析功能,实现接口统一和语义统一,有望为全类模型互操作指明方向。 |